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Abstract. The level crossing mechanism between the ground and the first excited state of Na:Fe6 antiferro-
magnetically coupled iron rings is studied by torque magnetometry down to 40 mK and in magnetic fields
up to 28 T. The step width at the crossing field Bc assumes a finite value at the lowest temperatures. This
fact is ascribed to the presence of level anticrossing, not expected for a ring with axial, i.e. S6 point group,
symmetry. Assuming a reduced symmetry, we revised the model Hamiltonian of such a spin system by
introducing a Dzyaloshinsky-Moriya (DM) term and we show, by exact diagonalization, that DM term can
account for the mixing of states with different parity. In particular, analytical as well numerical analysis
show that the introduction of the DM term may contribute to the broadening of the torque step as well as
for the finite energy gap at Bc observed by heat capacity in a similar ring Li:Fe6 as previously reported [9].

PACS. 75.50.Xx Molecular magnets – 75.30.Gw Magnetic anisotropy – 75.10.Jm Quantized spin models

1 Introduction

Antiferromagnetically coupled iron rings attract increas-
ing interest as prototypes of mesoscopic magnetic systems
in which quantum phenomena can be observed at a macro-
scopic scale. Supramolecular synthesis has in fact made
considerable progresses in the recent years and among this
family of antiferromagnetic wheels [1] different species,
such as the Fe6 [2,3], Fe10 [4], Fe12 [5], Fe18 [6], Cr8 [7],
can be grown in bulk quantity. Due to the dominant an-
tiferromagnetic character of the nearest neighbor (n.n.)
interaction, at low temperature and in zero magnetic field
the ground state of rings, comprising an even number
metal centers, is non-magnetic. The application of mag-
netic field with increasing strength gives rise to regularly
spaced steps in the magnetization reflecting the spin flip
process to states with progressively higher magnetic mo-
ments. In previous works we have shown how torque mag-
netometry can be successfully applied to study the mag-
netic anisotropy of these molecular rings [8,3]. Different
experimental techniques, such as heat capacity and proton
NMR relaxation-rate measurements [9], have been used to
study in a great detail the level crossing mechanism oc-
curring at crossing fields Bcn, where n is the order of the
transition. Results of these combined experiments clearly
show the presence of a finite energy gap at Bcn, that is
an anticrossing mechanism, whose origin is not expected
for rings with axial, i.e. S6 point group symmetry [9]. In
this work we report new experimental results obtained on
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Na:Fe6 molecular rings by torque magnetometry at very
low temperature (down to 40 mK) providing further evi-
dence for level anticrossing at Bc1.

The basic Hamiltonian used to describe cyclic spin sys-
tem can be written as:

H = J

N∑
i=1

Si · Si+1 +
N∑

i=1

Ui(Si) + gµBB ·
N∑

i=1

Si (1)

where the first term is the Heisenberg exchange with J > 0
accounting for the antiferromagnetic interaction between
the n.n. spins and SN+1 = S1, the second term accounts
for the magnetic anisotropy and the third term is the Zee-
man energy of spins in an external magnetic field B. In the
case of infinite chains the eigenvalues and eigenvectors
of the well known Heisenberg isotropic Hamiltonian are
known only for s = 1/2 in one dimension [10], while
reference [11] fixes the mathematical structure for anti-
ferromagnetic/ferromagnetic interactions for closed spin
chains. A semi-classical theory, the non linear σ model,
has been also applied to molecular ferric wheels [12]. The
semi-classical model reproduces the main features of these
quantum systems and can be easily extended to rings with
higher nuclearity. Moreover by using the non linear σ
model, Loss and coworkers pointed out that these com-
pounds are good candidates for the observation of macro-
scopic quantum coherence through coherent tunneling of
the Néel vector [13], a very interesting issue currently un-
der investigation. For small N , exact diagonalization of the
spin Hamiltonian (1) have been performed [8,14] and the
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Fig. 1. Low-lying energy levels obtained by exact diagonaliza-
tion of the Hamiltonian (1) with J and the anisotropy term
of Na:Fe6 [8].

thermodynamic properties of the spin system can be com-
puted. In Figure 1 we report the low-lying energy levels for
the antiferromagnetically coupled spin system described
by (1). In the limit of dominant Heisenberg interaction
the total spin S of the cluster can be used to describe
the ground state, and both numerical and semiclassical
approaches show that, at low temperatures and in zero
field, the ground state is a singlet (S = 0) while the ex-
cited states S = 1, 2, . . . , which are spin waves character-
istic of cyclic systems [15], are separated by finite energy
values En that approximately follow the Lande’s inter-
val rule En = (2J/N)S(S + 1). The magnetic anisotropy
gives rise to zero field splitting of multiplets while the
application of the external magnetic field lowers the en-
ergy of excited states provoking a progressive spin flip as
observed in magnetization or torque measurements. Since
the crossing states have different parity, the puzzling ques-
tion is to find mixing terms that account for the level
repulsion observed at Bc [9]. In fact exact diagonaliza-
tion as well as general symmetry consideration [8,14,16],
show that terms in (1) do not mix states with different
parity and therefore we need to consider non-Heisenberg
spin-spin interactions. Nakano and Miyashita proposed to
introduce antisymmetric interactions in order to explain
dynamical effects in ferric wheels [17]. However these in-
teractions must respect the symmetry of the system, a
condition that was not taken into account by Nakano and
Miyashita. It is very likely that antisymmetric interac-
tions are present in molecular clusters and it is interesting
to see to which extent they can account for level anti-
crossing. There are quite a lot of studies, both theoreti-
cal and experimental, that demonstrate the importance of
this type of exchange in spin glasses [18] and frustrated
magnetic systems [19]. Such interactions can influence the
ground state energy and the dimerization of spin-Peierls
systems like CuGeO3 [20], moreover they describe weak
ferromagnetism in predominantly antiferromagnetic sys-
tems such as La2CuO4 [21]; antisymmetric coupling also
give rise to a contribution to the magnetic Raman pro-
cess in the quasi-one-dimensional transition-metal oxide

Fig. 2. Angle 0 ≤ θ ≤ π
2

between the magnetic field and
the z-axis perpendicular to the xy-plane of the iron ring.

as NaV2O5 [22]. One aim of this work is to clarify which
interaction is allowed by the symmetry of the ferric wheels.
We will consider the antisymmetric interaction:

d · (S2 × S1) (2)

where d is the vector predicted by Dzyaloshinsky [23]
and then theoretically developed by Moriya [24]. Equa-
tion (2) accounts for antisymmetric spin-spin interaction
and Moriya showed that such a term can be derived by
the tensor describing anisotropic super-exchange between
two neighboring spins. We shall first discuss the d vector
allowed by the ring symmetry, then we shall estimate its
effects.

The article is organized as follows: in Section 2 we
report new experimental results obtained by torque mag-
netometry on Na:Fe6 crystals at very low temperature; in
Section 3 we discuss the theoretical model starting from
a general interaction between n.n. spins and introducing
the DM term in (1); in Section 4 we describe the compu-
tational method; in Section 5 we report results of exact
diagonalization of the Hamiltonian, finally Section 6 is
dedicated to a general discussion of results.

2 Experimental results

[NaFe6(OCH3)12(C17H15O4)6]ClO4 (Na:Fe6 in short) sin-
gle crystals having approximate dimensions 100 × 100 ×
200 µm were grown as described in reference [2]. A small
CuBe cantilever combined with a capacitance bridge was
used as torque magnetometer [8,3]. The θ angle between
the magnetic field B and the z axis perpendicular to the
xy-plane of the iron rings is defined in Figure 2 and in this
work we report results obtained at θ = 45◦ for which the
torque signal is maximum.

We report here new results of experiments performed
on two different single crystals (hereafter named #A and
#B) by means of a dilution refrigerator down to 40 mK
and we compare them with data previously obtained on a
third crystal (sample #C) by using a 3He cryostat down
to 0.45 K from reference [8].

Figure 3 shows a typical torque signal measured as a
function of magnetic field B at 220 mK on sample #A.
Different sweep rates, ranging from 0.01 T/s to 0.06 T/s,
were used in order to check whether time dependent phe-
nomena, such as blocking of magnetization, occur. In prac-
tice, a complete sweep from 15 T to 20 T and back took
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Fig. 3. Torque signal measured as a function of magnetic field
up to 28 T at 220 mK and θ = 45◦ on Na:Fe6 crystal (sam-
ple #A).

a few minutes and in this lapse of time curves taken with
increasing and decreasing field overlap each other within
our experimental accuracy. This check was repeated at the
lowest temperature and hysteresis was never observed, in-
dicating that possible time dependent phenomena could
only occur in a time scale much shorter than what we
used in our experiments. Further details of the curve re-
ported in Figure 3 are worth to be observed. Below Bc,
the torque signal is positive and it slightly increases –
almost linearly– for increasing field. Conversely above Bc

the torque signal τ is essentially flat, i.e. field indepen-
dent. The quasi-linear increase of the torque signal be-
low Bc reveals a non vanishing magnetic character of the
ground state, in contrast to what expected for a purely
singlet state. In Figure 3 is also plotted the derivative of
the torque signal τ with respect to the external field in-
tensity B. The bell shape of dτ/dB vs. B curves allows
one to determine the crossing field Bc as well as the width
of the step. The crossing field Bc can be defined as the
field at which the derivative dτ/dB is maximum while
the broadening of the torque step is evaluated by directly
measuring the full width at half maximum FWHM of the
dτ/dB vs. B curves. Note that this definition of FWHM
does not depend on the shape of dτ/dB vs. B curve that
may change with temperature.

In Figure 4 we plot the FWHM of the dτ/dB vs. B
measured on the three samples as a function of temper-
ature. At the lowest temperatures the step width mea-
sured on sample #B is slightly smaller than that mea-
sured on sample #A, FWHM = 0.4 ± 0.1 T instead of
FWHM = 0.5± 0.1 T respectively for #B and #A, sug-
gesting a better quality of sample #B. At the highest tem-
peratures, data of the three samples lie on the same curve
and this demonstrates the good reproducibility of results.
Above 300 mK, the experimental FWHM data fit well the
linear temperature dependence FWHM=3.53kBT/µBgS
as expected from the Zeeman term [8]. Below ∼ 200 mK,
there is a clear deviation from this linear temperature de-
pendence: The step width approaches a finite value for

Fig. 4. Temperature dependence of the step width mea-
sured on three different Na:Fe6 crystals. The continuous line
represents the linear temperature dependence FWHM =
3.53kBT/µBgS as expected from Zeeman term (see Ref. [8])
while the dashed line is an empirical curve FWHM = {∆B2

c +
(3.53kBT/µBgS)2}1/2 with ∆Bc = 0.4 T. Data of sample #C
are taken from reference [8].

vanishing temperature. Both intrinsic (level anticrossing)
and extrinsic factors may contribute to a T -independent
broadening of the step width. We expect, for instance, that
an inevitable loss of solvent during the sample mount-
ing may provoke different magnetic exchange strengths
with a consequent spread of crossing fields Bc within
the crystal. This can account for the slightly different
FWHM observed on sample #A and #B, but the large
FWHM = 0.4 ± 0.1 T observed is not compatible with
the good crystallographic quality of the small samples
used in our experiments. Based on these considerations
and on heat capacity and NMR relaxation-rate results
that clearly evidence the presence of a finite energy gap
at Bc [9] we are lead to consider in the next section the
origin of the anticrossing mechanism.

3 Model description

Let consider first the general Hamiltonian for N interact-
ing Fe3+ (s = 5/2) in an external magnetic field B:

H =
N∑

i,j=1

Si · Jij · Sj + gµBB ·
N∑

i=1

Si, (3)

where N is the number of sites in a ring, SN+1 = S1,
and Si is the 5/2-spin operator in the i-site. The first
term of the Hamiltonian (3) is a spin bilinear operator
containing the tensor Jij that describes the most general
interaction between two spins. Any second-rank tensor,
like Jij , can be decomposed into the sum of symmetric
and antisymmetric tensors [27] and the symmetric part
can be easily taken traceless. We consider only next neigh-
bor exchange interaction (symmetric and antisymmetric)
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Fig. 5. The z component of DM vectors dz,i in the case of S6

symmetry of an iron ring of six spins si = 5
2
.

and magnetic anisotropy due to single-ion and dipolar in-
teractions. In this way the Hamiltonian (3) can be written
as:

H = J
N∑

i=1

Si · Si+1 +
N∑

i=1

di · (Si × Si+1)

+
N∑

i=1

Si · Dan
ii · Si + gµBB ·

N∑
i=1

Si (4)

or more compactly:

H = HHei + HDM + Han + HZeeman. (5)

In the first term HHei, J describes the usual Heisen-
berg antiferromagnetic interactions in the case of equiv-
alent Fe3+ sites (more complex situation will be dis-
cussed below), the second term HDM is the antisymmetric
spin Hamiltonian describing the Dzyaloshinsky−Moriya
(DM) interaction, in Han, Dan

ii is a symmetric trace-
less tensor that describes the single ion anisotropy and
HZeeman is the Zeeman term. Note that the (5) reduces
to (1) just taking HDM = 0.

Here we discuss in detail the HDM term. The vector
di contains the three antisymmetric independent elements
of the decomposition of general tensor Jij . This term can
be obtained considering the spin-orbit coupling on two
magnetic ions and the exchange interaction as a pertur-
bation of the unperturbed states [28,27,25]. According to
the original Dzyaloshinsky work [23], the DM vectors are
strictly connected to the symmetry of the spin system.
The crystal structure of Na:Fe6, as determined by X-ray
diffraction at room temperature [2], has S6 point group
symmetry. We can simply see by geometrical arguments
(see Fig. 5) that total effects of DM vectors must van-
ish, and a true level crossing at Bc is expected (as shown
in Fig. 1). Yet, the new experimental results reported in
this work as well as heat capacity and NMR relaxation-
rate measurements of finite energy gap at Bc [9] show an
anticrossing mechanism and in this framework the pres-
ence of an antisymmetric term is required. Here we simply
assume that the S6 axial symmetry is reduced to C3 sym-
metry with the inversion point in the center of the ring.
New experimental work is certainly required in order to
clarify when and how this lowering of symmetry occurs.
With C3 symmetry, it turns out that the DM interactions
HDM can actually be finite because the single interaction
between n.n. spins is not subject to axial symmetry and
we can figure out the orientation of the di vectors, repre-
senting the coupling between next neighbor spins. It turns
out (see Fig. 6) that the geometrical construction of each

Fig. 6. Alternating DM vectors along the z-direction in a
dimerized ring.

di · (Si × Si+1) coupling allows a difference between dz,i

and dz,i+1, i.e.:

|dz, i − dz, i+1| �= 0, (6)

while we can neglect dx,i and dy,i components in the plane
of the ring because they do not contribute to level anti-
crossing (see Appendix A).

4 Diagonalization technique

The level crossing mechanism for antiferromagnetic rings
is well characterized by the energy gap at Bc,n and by
the steps in the magnetization as well as in the mag-
netic anisotropy (measured by torque) at given crossing
field Bc,n, where n is the order of the transition.

The numerical technique used for exact diagonaliza-
tion of (5) is based on the Lanczos method. The dimension
of the Hamiltonian matrix (5) is [(2s + 1)N × (2s + 1)N ]
and in the case of N = 6 and s = 5/2, a 46 656 basis is re-
quired. The intrinsic symmetry of the spin and of the ring
allows, however, to work with ≈ 1% of the total matrix
elements.

Once the Hamiltonian (5) has been diagonalized, we
can compute the magnetization of the rings:

M =
∂

∂B
〈H〉 = 〈Sz〉 cos θ + 〈Sx〉 sin θ. (7)

Furthermore, we can calculate the torque T = M × B
acting on a ring. Setting the magnetic field in the xz−
plane (see Fig. 2), we have only the Ty components, hence
differentiating the Zeeman term in (5) with respect to θ
it is easy to find:

Ty = − ∂HZeeman

∂θ

∣∣∣∣
B

= −gµBB(〈Sx〉 cos θ − 〈Sz〉 sin θ).

(8)

Taking into account the finite temperature used in the ex-
periments, we introduce the Boltzmann factor as follows:

〈Ty〉 =
〈α|Ty|α〉e−Eα/(kBT ) + 〈β|Ty|β〉e−Eβ/(kBT )

e−Eα/(kBT ) + e−Eβ/(kBT )
, (9)

where |α〉 and |β〉 are the first two lowest-lying states
and Eα and Eβ their eigenvalues respectively. In the case
of Bc1(θ) we have |α〉 = |0〉 that is magnetically isotropic
so the torque reflects only the contribution due to the state
|β〉 = |1,−1〉.
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Finally we also evaluate the energy gap at Bc by an
analytical method. In the limit of dominant Heisenberg
HHei interaction, we can find possible matrix elements
that mix states with different parity of the full Hamil-
tonian (5). If we take two maximal negative polarized
states of the total spin of the ring, that is |Stot,−Stot〉
and |(Stot + 1),−(Stot + 1)〉, where Stot = 0, 1, . . . and
Stot + 1 is the total spin of the successive state, we can
calculate the matrix elements that, in turn, allow us to
obtain the energy gap ∆Bc,n at Bc,n:

∆Bc,n =
N

3
|dz,i − dz,i+1|

×
〈
Stot + 1,−

(
Stot + 1

)
|H|Stot,−Stot

〉
sin θ.

(10)

The matrix element of (10) is evaluated in Appendix A.
Note that ∆Bc,n simply depends on sin θ. As it is pos-
sible to see from the rigid-rotor model proposed in [14],
the xy-plane is the most important to study the anisotropy
of single-ion parameters and the consequent shift of the
level crossing Bcn(θ).

5 Numerical results

We set Dan
zz /J = 0.0183 for Na:Fe6 [8]. Obviously the sin-

gle ion-anisotropy must be traceless, so Dan
xx = Dan

yy =
−Dan

zz /2, the positive sign of the tensor points to hard
magnetic axis. The magnetic field orientations is in xz-
plane, see Figure 2, as in the experiments. A rough es-
timation of di can be |di| ≈ (∆g/g)J , where ∆g =
|gFe − go|, gFe is the effective gyromagnetic factor and
go the gyromagnetic factor for the free-electron [25]. We
analyzed different cases: 1) alternated J , i.e. Ji �= Ji+1

((Ji − Ji+1)/kB = 3.0583 K), and d = 0; 2) J = 31.43 K,
and di = di+1 = 0.0183J ; 3) J = 31.43 K, and di �=
di+1 (|di − di+1| = 0.0136J). The computed pattern of
the low-lying energy levels for the antiferromagnetically
coupled spin system described by (5) and with θ = π/4 is
shown in Figure 7. For sake of clarity, in this figure are re-
ported the eigenvalues of the Hamiltonian (5) just for the
case 1) (dotted line) and for the case 3) (solid line). In the
first case the dimerization of isotropic coupling in the sym-
metrical Hamiltonian HHei does not contribute to ∆Bc,n ,
in fact HHei is not able to mix the lowest-lying states.
Note that neither the case 2) (i.e. di = di+1 �= 0, not
plotted in Fig. 7) gives rise to level anticrossing. On the
other hand the dimerization of the antisymmetric coupling
di �= di+1 is able to produce a level repulsion at ∆Bc,n

(see Fig. 7). This is one important result of our numerical
computation.

Note that the level repulsion, obtained by exact diag-
onalization, agrees with the condition (10), in which the
separations between the two lowest lying levels increases
with θ: the level anti-crossing is equal to zero for θ = 0
(crossing) and maximum for θ = π/2, B in the xy−plane.
The energy difference ∆ between the two lowest lying lev-
els is plotted in Figure 8. At the second crossing, ∆Bc,2 is

Fig. 7. Low-lying energy levels for Na:Fe6 with |di − di+1| =
0.0136J (solid line), and with Ji − Ji+1 = 3.0583 K and d = 0
(dotted line). In this case, levels are shifted downward for sake
of clarity. The orientation of magnetic field is θ = π

4
.

Fig. 8. Energy separation (∆) between the ground state and
the first exited state. The orientation of the magnetic field is
θ = π/4, J = 31.43K, and |di − di+1| = 0.0136J .

Fig. 9. The computed magnetization as a function of magnetic
field at zero temperature, with |di − di+1| = 0.0136J (solid
line), and di = di+1 = 0 (dotted line).

twice ∆Bc,1 , the energy gap at the first crossing, in reason-
able agreement with the matrix element computed in (10)
(see Appendix A).

In Figure 9 we show the magnetization computed for
Na:Fe6 molecular rings as described in the previous sec-
tion and with T = 0, θ = π/4. Without the antisymmetric
terms HDM we obtain the right step-like curve at Bc1(θ),
in agreement with reference [14], as expected for a system
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Fig. 10. The computed torque signal as a function of magnetic
field (T = 40 mK), with |di −di+1| = 0.0136J (solid line), and
di = di+1 = 0 (dotted line).

with the S6 symmetry. Imposing the symmetry lowering
and |di − di+1| = 0.0136J , we can observe a finite broad-
ening of the magnetization step at Bc1(θ).

The computed torque at T = 40 mK reported in Fig-
ure 10 is equal to zero for every field value B at θ = 0
and θ = π/2 while for B > Bc1 and θ = π/4 the torque
obtains its maximum intensity as actually found in ex-
periments [8,3]. Note that the simulation of the torque
signal reported in Figure 10 shows a non vanishing sig-
nal obtained for B < Bc1. This is due to the mixing be-
tween the |0〉 and the |2,−2〉 states by the anisotropy
term Han. With di = di+1 the torque signal presents
a step-like behavior near crossing field Bc ≈ 4J/6gµB

while a finite broadening of the step is obtained by set-
ting |di − di+1| = 0.0136J . So we conclude that the in-
troduction of HDM with di �= di+1 may contribute to the
broadening of the magnetization and to that of the torque
step.

6 Discussion

The main experimental result reported in this work is the
observation of a finite broadening of the torque step at
very low temperature in antiferromagnetically coupled fer-
ric wheels. This result, together with heat capacity and
NMR relaxation-rate results [9] provide evidence for level
anticrossing in these molecular clusters. Consequently we
were led to introduce an antisymmetric term in the spin
Hamiltonian of these systems and to performed exact di-
agonalization of (5) in order to see to which extent DM in-
teraction may contribute to this level anticrossing. Here we
further discuss the origin and the effects of the presence of
the Dzyaloshinsky-Moriya (DM) term in the Hamiltonian.

As we mentioned in the previous section the appear-
ance of the DM interaction is strictly connected to the
symmetry of the system. Nakano and Miyashita [17] in-
troduced the DM interaction considering only two n.n.
spins but they did not take into account the symmetry
of the ring. For iron rings with S6 symmetry, HDM does
not contribute to the level anticrossing and the reduction

the symmetry to C3 is mandatory in order to have non
vanishing effects of HDM . General symmetry arguments
show that, in a centrosymmetric ring any perturbation is
not able to provoke an energy separation ∆Bcn between
the lowest-lying states at Bcn [11]. That is why we as-
sumed a dimerized molecule although this point needs to
be confirmed by accurate X-ray investigations. The mech-
anism leading to the dimerization is an interesting issue.
For instance it will be interesting to check whether the
Jahn-Teller mechanism plays a role for dimerization of
iron rings, or whether the dimerization is induced by the
lowering of T or by the presence of magnetic field. We just
note that numerical simulations that we performed for a
simple spin model systems show that the total energy of
a dimerized ring is lower than that of the ideal symmetric
ring.

A first important result of our numerical simulations
is that the introduction of the DM term can reproduce
quite easily the finite energy gap directly measured by
heat capacity on Li:Fe6 [9]. In reference [9] we esti-
mated ∆Bc1/kB = 0.86 K and ∆Bc2/kB = 2.36 K. Us-
ing the model Hamiltonian (5) we may exactly repro-
duce these values taking J/kB=21.58 K, Dan

zz =-0.02J , and
|di − di+1| = 0.043J . It is worth to stress that the sim-
ple dimerization of the symmetric part of the exchange
interaction, i.e. Ji �= Ji+1, as well as the introduction of
di = di+1 �= 0 are not sufficient to produce a level anti-
crossing. Only the introduction of the condition di �= di+1

gives a level repulsion at Bc within the framework of our
model. Note that |di −di+1| = 0.043J obtained for Li:Fe6

is larger than in the case of Na:Fe6. This is not surprising
since the guest alkaline ion (Li, Na) inside the Fe ring is
actually able to change the interactions among the Fe ions
by slightly distorting the wheels as we demonstrate in our
previous work [3]. In both cases, however, |di − di+1| are
only few percent of the exchange constant J , consistently
with the perturbation method we used.

We already observed by torque magnetometry a broad
step width at crossing fields in Na:Fe6 and Fe10 [8,3]. In
the present work we extended the torque measurements
down to very low temperature 40 mK and we actually
found in two different Na:Fe6 crystals that the FWHM of
the step approaches a T -independent value as T vanishes.
Numerical diagonalization shows that the introduction of
the DM term in the spin Hamiltonian may actually give
a temperature independent contribution to the broaden-
ing of the torque signal if we take di �= di+1. It is worth
to observe that analytical evaluation of the energy gap
at Bc (see Eq. (10)) as well numerical calculation of the
torque signal at different θ angle show that the level re-
pulsion should vanish as θ gets close to 0 (easy plane) and
it should be maximum for θ = π/2. This is a special fea-
ture due to the introduction of the DM term that should
be further checked by experiments. Unfortunately, due to
the difficulty of torque experiments at very low tempera-
tures, the angular dependence of FWHM has not been
systematically studied yet, but it is an important test to
perform in the next future.
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In conclusion, the finite broadening of torque step ob-
served at very low temperature in Na:Fe6 supports results
of recent heat capacity and NMR relaxation-rate experi-
ments [9] indicating strong level repulsion. We showed that
DM interaction may contribute to level anticrossing if we
assume a reduced symmetry of system. This hint needs to
be corroborated by further experimental and theoretical
work.

We thank A. Cornia (Modena), J. Villain (Grenoble), R.
Sessoli and A. Rettori (Firenze) for their suggestions and com-
ments. Experiments at the Grenoble High Magnetic Field Lab-
oratory were supported by the European Community within
the framework of the “Access to Research Infrastructure Ac-
tion of Improving Human potential” Program.

Appendix A

We study a cyclic system comprising 6 antiferromagnet-
ically coupled spins and we consider two bipartite spin
systems: the sub-system A composed by the spins on even
sites with total spin SA =

∑
i=2,4,6 Si (N/2 spins up), and

the sub-system B composed by the spins on odd sites with
total spin SB =

∑
i=1,3,5 Si (N/2 spins down). In this way

the total spin is Stot = SA − SB. Introducing a tensorial
representation of the spin operators, we can build irre-
ducible tensor of order k composed by (2k + 1) elements
(in our case we have k = 1 order vectors) [26,27]. So we
have a set of irreducible tensor operators, corresponding
to the index m = 1, 0,−1, defined as T11(Si), T10(Si),
T1−1(Si) respectively and where Si are the spins on single
site of two sub-systems A and B. Now we take the cou-
pling of i-site with (i+1)-site expressed by tensor product,
T ′

KM (Si, Si+1) = {Tkm(Si) ⊗ Tk′m′(Si+1)}KM , where K
and M characterize the order of the coupling tensor, and
we call T ′′

KM (Si, Si) = {Tkm(Si)⊗Tk′m′(Si)}KM the prod-
uct of the spin component on each site. Hence the three
spin components are:

Sx,i = − 1√
2

[T11(Si) − T1−1(Si)]

Sy,i = − i√
2

[T11(Si) + T1−1(Si)]

Sz,i = T10(Si).

For our approximation we need to connect the state

|SASB; Stot,−Stot〉

with the stateSASB; Stot + 1,−
(
Stot + 1

)〉
.

For the symmetry of the anisotropy term Han of the
Hamiltonian (5), the only tensor elements that connect
such states are:

Sx,iSz,i + Sz,iSx,i = −
[
T ′′

21(Si, Si) + T ′′
2−1(Si, Si)

]
(11)

Sy,iSz,i + Sz,iSy,i = i
[
T ′′

21(Si, Si) + T ′′
2−1(Si, Si)

]
. (12)

These elements are able to connect the singlet state
(Stot = 0) with the quintet state (Stot = 2) and also
the triplet state (Stot = 1) with the quintet state. How-
ever (11) and (12) are not able to connect the total singlet
state with the triplet state (tensor T ′′

2−1). The last possi-
bility is permitted only by the DM term, HDM :

(Si × Si+1)x = i
[
T ′

11(Si, Si+1) − T ′
1−1(Si, Si+1)

]
(13)

(Si × Si+1)y = T ′
11(Si, S1+1) + T ′

1−1(Si, Si+1) (14)

that give a component T ′
1−1, while the component (Si ×

Si+1)z does not contribute. We take the total spin system
and we evaluate the matrix element

〈
SASB; Stot + 1,−

(
Stot + 1

)T ′
1−1(Si, S+1)

SASB;

Stot,−Stot
〉

(15)

applying the well-known Wigner rules in the 3-{j} and
6-{j} symbology [26,27], we can write (15) as

(−1)2Stot

(
Stot + 1 1 Stot

Stot + 1 −1 −Stot

)

×
〈
SASB, Stot + 1 |[T ′

1 (Si) ⊗ T ′
1 (Si+1)]1|SASB, Stot

〉

=
[
3

(
2Stot + 3

)]1/2 ∑
|Stot−1|≤j≤Stot+1

{
1 1 1

Stot Stot + 1 j

}

×
〈
SASB, Stot + 1 |T ′

1 (Si)|SASB , j〉〈SASB,

j|T ′
1 (Si+1)|SASB , Stot

〉

=
(−1)2Stot

2
√

2N2

×
(Stot+1)

{
(Stot+1)

[
(2SA+1)2−(Stot+1)2

]}1/2

(2Stot+3)1/2
·

(16)

Thus in case of Fe6 Sa = 15/2, N/2 = 3 the matrix
element (16) is 0.36218 . . . for Stot = 0, 0.7888 . . . for
Stot = 1, 1.2125 . . . for Stot = 2 and so on.
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